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Uniform spanning trees are a statistical model obtained by taking the set of all spanning trees on a given
graph(such as a portion of a cubic lattice ind dimensions), with equal probability for each distinct tree. Some
properties of such trees can be obtained in terms of the Laplacian matrix on the graph, by using Grassmann
integrals. We use this to obtain exact exponents that bound those for the power-law decay of the probability
that k distinct branches of the tree pass close to each of two distinct points, as the size of the lattice tends to
infinity.
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In graph theory, a tree on a graph is a connected subset of
the vertices and edges without cycles, and a spanning tree is
a tree that includes alln vertices of the graph(it must then
haven−1 edges). Results for the number of spanning trees
on a given graph go back to the 19th century(see, e.g., Ref.
[1]). If each spanning tree is given equal probability, we
obtain uniform spanning trees. In this paper, we consider
uniform spanning trees on(a portion of) the square, cubic, or
hypercubic lattice ind dimensions. One would like to char-
acterize the fractal properties of the trees as the size(number
of vertices) of the lattice goes to infinity. One characteristic
is the probability that two well-separated points are nearly
connected byk=1,2,3, . . .distinct branches of the tree, or
alternatively by distinct paths along the tree, and these are
expected to behave as power laws that are described by criti-
cal exponents. We will study these by methods based on the
classical results, and obtain some exact exponents, which
serve as bounds for more general ones.(In two dimensions,
the exact results have been known for some time[2–6].) The
motivation to consider this problem came from its connec-
tion to some optimization problems, which are in turn con-
nected with the ground states of classical systems with
quenched disorder, such as Ising spin glasses. In the two-
dimensional case, there is also a connection with loop mod-
els, theQ→0 Potts model, and Coulomb gases in conformal
field theory[2–4].

First we note that the result[variously attributed either to
Kirchhoff (1847), or to Sylvester(1857), Borchardt(1860),
and Cayley(1856)] for the numberN of spanning trees on a
graph can be written in the following generalized form:

N = cof Dsx1,y1d = s− 1dx1+y1detDsx1,y1d, s1d

where we have recalled the definition of the cofactor. Here
x1, y1=1,2, . . . label the vertices in the graph, the matrixD
(the lattice Laplacian) is defined as

Dsx,yd = 5 degx if x = y,

− t if x andy are connected byt edges,

0 otherwise,

s2d

and Dsx1,y1d means the minor ofsx1,y1d, i.e., D with row x1

and columny1 deleted. Forx1=y1, this reduces to the better
known result. The effect of deleting a row and column is to

remove the zero mode that would otherwise cause the deter-
minant ofD to vanish.

The result generalizes further to a relation that involves
the numberNsx1y1,x2y2,. . .,xkykd of spanning subgraphs without
circuits with k components, and withxi, yi in the same com-
ponent for eachi (we will assume that allxi, yi are distinct).
The result is

cof Dsx1¯xk,y1¯ykd= ± o
PPSk

Nsx1yPs1d,x2yPs2d,. . .,xkyPskddsgnP.

s3d

Here the cofactor is again

s− 1do
i=1

k
sxi+yiddetDsx1¯xk,y1¯ykd, s4d

where rowsxi and columnsyi have been deleted, andP runs
over permutations ofk symbols. The overall sign on the
right-hand side depends on the details of how the vertices are
labeled and is uninteresting. Both the generalizations are
mentioned by Ivashkevich[5] (see also Ref.[7]), but he
omits the signs in the cofactors. The results can be proved by
an extension of the proof given, for example, in Ref.[1].

In the following, we will consider a graph that is a
bounded portionL of the d-dimensional cubic latticeZd

(with edges that connect only nearest neighbors at Euclidean
distance 1 in lattice units). We will be interested in the fol-
lowing property of a spanning tree. We choose two vertices
x, y, together with a neighborhood of each. We assume that
the neighborhoods are chosen in such a way that the bound-
ary passes through some vertices, but no edges ofL cross the
boundary; all edges are either inside or outside. We takek
verticesxi on the boundary of the neighborhoodx, and k
verticesyi on the boundary of that ofy. In practice, this can
be satisfied using neighborhoods that are approximately balls
of radius of orderk1/sd−1d. We can now look at the part of the
tree lying outside the two neighborhoods; this amounts to a
forest of trees, with each tree rooted on both the boundaries
of the neighborhoods ofx andy. We ask whether, for eachi,
the pointsxi, yi lie in the same connected component in this
forest, and are in a distinct component from any other pairxj,
yj. If so, then in terms of the original tree thexi’s are con-
nected to the correspondingyi’s by branches of the tree that
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are distinct outside the two neighborhoods selected, and we
call this “crossingk times (between specified points in the
neighborhoods ofx andy) by distinct branches.” See Fig. 1.
For given L, neighborhoods ofx and y, and pointsxi, yi,
denote the number of such treesNbranches

sx1y1,x2y2,. . .,xkykd. Then we
also define corresponding probabilities,

Pbranches
sx1y1,x2y2,. . .,xkykd = Nbranches

sx1y1,x2y2,. . .,xkykd/N. s5d

It is obvious that there is a relation between this definition
and thek-component spanning subgraphs without circuits
considered before, if the latter are defined onL−, that is,L
with the interiors of the neighborhoods ofx andy removed.
Given ak-component spanning subgraph ofL−, a spanning
tree ofL can be obtained by addingk−1 edges, each inside
either the neighborhood ofx or of y, together with one edge
for each vertex inL−L−. If we also assume that there are
exactlyk vertices on the boundaries of each of the two neigh-
borhoods, thenNbranches

sx1y1,x2y2,. . .,xkykd is obtained by summing over
all the ways to add edges to eachk-component spanning
subgraph ofL− (with xi andyi in the ith component for alli)
to obtain a spanning tree ofL whose branches are distinct
outside the two neighborhoods, and then also summing over
the k-component subgraphs used in this construction. As the
maximum possible number of ways to add edges is limited
by the size of the neighborhoods used,Nbranches

sx1y1,x2y2,. . .,xkykd is
only slightly larger than the numberNsx1y1,x2y2,. . .,xkykd of
k-component spanning graphs ofL−. (More precisely, there
is a boundNbranches

sx1y1,x2y2,. . .,xkykdøck,dNsx1y1,x2y2,. . .,xkykd whereck,d
is independent of the distance fromx to y.)

Another possible definition of crossing fromx to y would
require only that thek crossings of the spanning tree be made
by k pathson the tree that are distinct(have no edges in
common) outside the neighborhoods(for k=1 these are the
same thing, and the probability is 1). See Fig. 1. These num-
bersNpaths

sx1y1,x2y2,. . .,xkykd can be obtained by adding edges to the
k-component spanning subgraph ofL− in arbitrary positions
in L, and soNbranches

sx1y1,x2y2,. . .,xkykdøNpaths
sx1y1,x2y2,. . .,xkykd, and

Nsx1y1,x2y2,. . .,xkykd/N ø Pbranches
sx1y1,x2y2,. . .,xkykd ø Ppaths

sx1y1,x2y2,. . .,xkykd.

s6d

These continue to hold even if there are more thank vertices
on the boundary of each neighborhood.

We will be interested in the scaling limit in which we first
let L→Zd (i.e., the system size tends to infinity) with x, y
fixed, and then we let the Euclidean distanceux−yu (in lattice
units) become large. In this limit, the leading behavior of any
of the ratios or probabilities just defined will behave as a
power law,P~ ux−yu−2Xk, whereXk is a scaling dimension
(which also depends ond). However, in the antisymmetrized
combination that appears in Eq.(3), the leading part of

Nsx1y1,x2y2,. . .,xkykd/N ~ ux − yu−2Xk
k components

s7d

may be canceled, so that a subleading power(with a larger
exponentXk

antisymm) may be dominant. Thus, in general, the
exponents must obey the inequalities

Xk
antisymmù Xk

k componentsù Xk
branchesù Xk

paths. s8d

As the addition of edges in the neighborhood ofx or y
contributes only a constant factor to the numbersNbranches,
we have thatXk

k components=Xk
branches. For the two-dimensional

case, the tree branches must enter the neighborhood ofx in a
sequence, and similarly aty. As the tree branches that cross
from x to y cannot intersect becauseL is planar, the only
nonzero terms in Eq.(3) are for P’s that differ only by a
cyclic permutation. Fork odd, all cyclic permutations ofk
objects are even permutations, so all terms have the same
sign, as if the sum were symmetrized. Therefore, ind=2,
Xk

antisymm=Xk
k componentsfor k odd. We also note that ind=2

dimensions, the boundary of a “thickened” tree is a noninter-
secting dense loop, and the crossing by distinct branches
corresponds to crossing by the loop, 2k times.

There is one further subtlety that must be mentioned. We
have defined ratios and probabilities on finite graphs, fol-
lowed by an infinite-volume limit. Each finite graph is
spanned by a single tree, by construction, but as the volume
increases, a path from one vertex to another in a typical tree
may involve larger and larger excursions, so that for infinite
volume, two vertices might be connected only “at infinity,”
and then they can be regarded as not connected. Then the
limiting measure is for a forest of trees, not a single tree. It
turns out that fordø4, there is a single tree in the infinite-
volume limit, while for d.4 there are infinitely many
(infinite-size) trees[8] (these statements hold with probabil-
ity 1). Crossing probabilities byk distinct branches ork dis-
tinct paths can be defined here as well, with crossing not
allowed to be “through infinity”; we denote exponents under
this condition by “,`.” These probabilities will be less than
or equal to the corresponding ones defined above, and so the
related exponents obeyXk

branches,`ùXk
branches, Xk

paths,`

ùXk
paths. One hasX1

,`=sd−4d /2 for d.4 (Ref. [8], Thm.
4.2), which because of the way this probability is normalized
(any vertex is on some tree) is consistent with the belief that
the Hausdorff dimension of any of the trees in the forest is 4
for d.4. It would be interesting to obtain the remaining

FIG. 1. Example of a spanning tree on a portion of the square
lattice, with pointsx, y and a neighborhood of each marked, with
verticesx1, x2, x3 andy1, y2, y3 on the boundary of each shown. In
this example, there are paths, lying outside the neighborhoods, that
connectxi to yi for eachi, as required, and those paths are distinct,
but there are only two distinct branches(connected components)
outside the neighborhoods. The pairsx2, y2 andx3, y3 do not lie on
distinct branches.
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exponentsXk
paths,` andXk

branches,` for k.1 also. In any case,
the distinction in definition disappears fordø4 where there
is a single spanning tree.

We now turn to the calculation of the antisymmetrized
combinations ofN’s. According to Eq.(3), the antisymme-
trized sum of the relevant ratios is given by a ratio of cofac-
tors,

cof Dsx1¯xk,y1¯ykd

cof Dsx1,y1d = ± o
PPSk

Nsx1yPs1d,x2yPs2d,. . .,xkyPskddsgnP/N.

s9d

As is well known, such cofactors can be obtained from
Gaussian integrals over Grassmann variablesc, c* ,

cof Dsx1¯xk,y1¯ykd= ±Ep
x

dcxdcx
* cx1

¯ cyk

* eox,y cxDsx,ydcy
*
,

s10d

where the overall sign is determined by the order of the
Grassmann integrations(not by the selected values ofxi, yi).
In the limits L→Zd, followed by the limit of x and y far
apart, the cofactors above become Gaussian integrals for a
continuum massless complex scalar Fermi field. The equa-
tion of motion for the Fermi fieldc is simply DC=0, where
D=om=1

d ]m]m is the Laplacian ind dimensions. As allxi
→x, the ratio of cofactors becomes a sum of correlation
functions of operators of the form

Osxd = c]mc ¯ ]m1m2¯
c s11d

(with k c’s, and where]m1m2¯
=]m1

]m2
¯) at x, with a similar

operator aty with c* in place ofc. The undifferentiatedc
and c* are necessary to cancel the zero mode, both in the
numerator and denominator of the correlation function. The
remaining integrals can be simply expressed(using Wick’s
theorem) in terms of sums of products of derivatives of
Green’s functionsGsx,yd=D−1sx,yd for the scalar fieldc in
d dimensions, and the required scaling limit of this expres-
sion exists; one hasGsx,yd~ ux−yud−2 for d.2. Thus the
scaling dimension ofc or c* is sd−2d /2 in d dimensions,
and an operator of the above formO has scaling dimension
Xk

antisymm=dim O equal tosk−1dsd−2d /2 plus the number of
partial derivatives inO (note that we replacedk by k−1
because the subtracted zero mode does not contribute to scal-
ing). This implies that fork=1, the operator has dimension
zero, which is correct as a spanning tree connects any two
points x, y. It will be convenient to define dim8 O=dim O
−sk−1dsd−2d /2.

To find the operator that contributes the leading behavior
of the correlation function for a givenk, we must use as few
derivatives as possible. Further, the equation of motion im-
plies that any trace such asom ]mmm3¯

c vanishes. Then the
leading termO is a product in which each multiindex partial
derivative]m1m2. . .c is a traceless symmetric tensor, and the
total degree(number of derivatives) in the product is as low
as possible. Because of the anticommutation of thec’s, O
vanishes unless the traceless symmetric tensors]m1m2¯

c are
linearly independent. We notice that the traceless symmetric

tensors of given rank(degree) in dimensiond form an irre-
ducible representation of the rotation group ind dimensions,
SOsdd. In general, we expect that the leading part of the
crossing probabilityPk transforms as a scalar under rota-
tions. A scalar(rotationally invariant) operator can be ob-
tained if the product includes either all or none of the mem-
bers of a complete linearly independent set of traceless
symmetric tensors for each degree(rank) l. Making the mini-
mal choices of the degrees, we notice that this is analogous
to filling states for fermions, where the single fermion states
correspond to the symmetric traceless tensors. These tensors
transform the same way as “hyperspherical harmonics,”
which span the space of functions on a sphereSd−1. This can
be seen easily by representing each]m by a component of a
vectorxm, which transforms the same way, and the traces can
be excluded if we assume thatom xmxm is constant, so that
tensors with nonvanishing trace are equivalent to lower-
degree functions. Then the symmetric functions inxm under
this condition are simply the functions onSd−1. If each fer-
mion onSd−1 has a kinetic energy that is equal to the angular
momentuml, then the many-fermion state with lowest total
kinetic energy for a given number of fermionsk corresponds
to using the lowest total degree. The case where all traceless
symmetric tensors of each(lowest) degree are used corre-
sponds to filling a Fermi sea by filling the lowest shells up to
angular momentum(degree of the traceless symmetric ten-
sor) L. The total kinetic energy corresponds to the scaling
dimension dim8O. When the lowest states are all filled, but
the topmost shell is only partially filled, the scaling dimen-
sion interpolates linearly between the values it takes for filled
shells. We point out that the use of fermions on the sphere is
more than an analogy, as the field theory of fermions onSd−1

with time t corresponds to the original problem in radial
quantization, obtained by conformallly mappingRd to Sd−1

3R by a logarithmic change of variable, so that the dilata-
tion operator becomes the Hamiltonian for the radial evolu-
tion.

We defineNsl ,dd to be the dimension of the space of
traceless symmetric tensors of degreel in dimension d.
When the shells are filled up to degreeL, the preceding con-
siderations lead immediately to the relations

k = o
l=0

L

Nsl,dd, s12d

dim8OL = o
l=0

L

lNsl,dd. s13d

Nsl ,dd is given for all l ù0 by

Nsl,dd = Sl + d − 1

l
D − Sl + d − 3

l − 2
D . s14d

Here the first term is the number of symmetric tensors, and
the subtraction is for removing the traces. From the binomial
coefficients one sees thatNsl ,dd is a polynomial inl of de-
gree d−2 for dù2, and hencek is a polynomial inL of
degreed−1, and dim8 OL is a polynomial of degreed.

The leading behavior forl large is
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Nsl,dd ,
2ld−2

sd − 2d!
s15d

(throughout this paper, we use notationX,Y asZ→` in the
strict sense: limZ→`X/Y=1). Then we find

k ,
2Ld−1

sd − 1d!
, s16d

dim8OL ,
2Ld

dsd − 2d!
, s17d

and hence

dim8 OL , dim OL ,
d − 1

d
F sd − 1d!

2
G1/sd−1d

kd/sd−1d,

s18d

for the values ofk specified. As mentioned above, for other
values ofk, the scaling dimension(now for an operator with
nonzero spin in general) lies on a piecewise linear continu-
ous curve that interpolates the values above, and lies above
that given implicitly by Eqs.(12) and(13), as polynomials in
L, which are trivially extended to continuous values.

By the inequalities(8), this result gives only an upper
bound on the leading exponentsXk

branchesor Xk
paths. However,

the general formulas do give the exact exponentsXk
antisymm

for some, possibly subleading, terms in the probability. The
rate of growth of the dimensionsXk

paths on the tree to cross
from x to y was shown rigorously to be less than of order
kd/sd−1d in Ref. [9]. We obtain a bound with the same power,
but now with a precise coefficient, and with subleading cor-
rections. Note that the piecewise-linear curve forXk

antisymmis
very close to its lower envelope, close enough that they have
the same average rate of growth, Eq.(18).

We now consider the exact form of the dimensions ob-
tained here for thek values given by Eq.(12) in small d. In
two dimensions,Nsl ,2d=2 (l .0), and then

dim Ok = sk2 − 1d/4 s19d

for k odd. This is in agreement with earlier results[2,3,5,6].
(Note that the scaling exponent for the path connectingx to y
along the tree[4] corresponds to the casek=2, by consider-

ing the dual tree.) As emphasized above, ford=2 andk odd,
the arguments in this paper produce theexact Xk

antisymm

=Xk
branches=sk2−1d /4, not only a bound. Note that after re-

placing k by k/2, this result is the same as the “k-leg” di-
mension fork crossings by a dense polymer[10].

For d=3, we have the familiar formulaNsl ,3d=2l +1, and
then k=sL+1d2, so L=Îk−1. For the scaling dimensions,
dim8 OL=LsL+1ds4L+5d /6, and

Xk
antisymm= dim Ok =

2

3
k3/2 −

1

6
k1/2 −

1

2
. s20d

For d.3, one can similarly solve explicitly, but the re-
sults are not as simple(in particular, they are not polynomi-
als in k1/sd−1d). I am grateful to C. Tanguy for pointing out
that Eqs.(12) and(13) can be summed in closed form for all
d, and that ford odd,k is a polynomial infL+sd−1d /2g2 of
degreesd−1d /2. Hence in the casesd=4, 5, 7, and 9, dimOk

can be expressed in terms of radicals ink. Ford=6, 8 and all
dù10, one meets polynomials of degree greater than 4, and
the results presumably cannot be expressed in terms of radi-
cals.

It is tempting to believe that the results obtained here for
the “filled shell” values ofk, and their smooth(polynomial in
L) extension to generalk, might be the exact values of
Xk

branchesandXk
pathsfor general dimensiond.2, as well as for

d=2. While it appears quite possible thatXk
branches=Xk

paths in
general, it is not at all clear that they equalXk

antisymm, espe-
cially as the equality that holds in two dimensions could be
obtained from a simple argument that all cyclic permutations
of an odd number of objects are even, an argument that defi-
nitely does not go through ind.2.

In conclusion, we have obtained, essentially rigorously, a
precise upper bound on the exponents fork crossings of the
uniform spanning tree on a finite graph ind dimensions, as
well as some exact scaling dimensions in each dimension.
However, we have not addressed the exponents in the uni-
form spanning forest which is obtained on an infinite graph
for d.4.
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