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Exponents and bounds for uniform spanning trees ind dimensions
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Uniform spanning trees are a statistical model obtained by taking the set of all spanning trees on a given
graph(such as a portion of a cubic lattice dndimensiong with equal probability for each distinct tree. Some
properties of such trees can be obtained in terms of the Laplacian matrix on the graph, by using Grassmann
integrals. We use this to obtain exact exponents that bound those for the power-law decay of the probability
thatk distinct branches of the tree pass close to each of two distinct points, as the size of the lattice tends to
infinity.
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In graph theory, a tree on a graph is a connected subset eémove the zero mode that would otherwise cause the deter-
the vertices and edges without cycles, and a spanning tree msinant of A to vanish.
a tree that includes alt vertices of the grapliit must then The result generalizes further to a relation that involves
haven-1 edges Results for the number of spanning treesthe number\V 122X of spanning subgraphs without
on a given graph go back to the 19th cent(sge, e.g., Ref. circuits withk components, and witk;, y; in the same com-
[1]). If each spanning tree is given equal probability, weponent for each (we will assume that alk;, y; are distinc}.
obtain uniform spanning trees. In this paper, we consideiThe result is
uniform spanning trees g portion of the square, cubic, or

hypercubic lattice ird dimensions. One would like to char- cof AT XeYr Y=+ D' NXYr@XYp@): - -X¥Pk)sgn P.
acterize the fractal properties of the trees as the(siamber Pe
of verticeg of the lattice goes to infinity. One characteristic (3)

is the probability that two well-separated points are nearly
connected byk=1,2,3,...distinct branches of the tree, or Here the cofactor is again
alternatively by distinct paths along the tree, and these are K
expected to behave as power laws that are described by criti- (= 1) 2,0 deth o Heyr Vi (4)
cal exponents. We will study these by methods based on the
classical results, and obtain some exact exponents, whialthere rowsx; and columnsgy; have been deleted, afiruns
serve as bounds for more general or@s.two dimensions, over permutations ok symbols. The overall sign on the
the exact results have been known for some {ig€6].) The  right-hand side depends on the details of how the vertices are
motivation to consider this problem came from its connecdabeled and is uninteresting. Both the generalizations are
tion to some optimization problems, which are in turn con-mentioned by Ivashkeviclj5] (see also Ref[7]), but he
nected with the ground states of classical systems witlomits the signs in the cofactors. The results can be proved by
guenched disorder, such as Ising spin glasses. In the twan extension of the proof given, for example, in Réf.
dimensional case, there is also a connection with loop mod- In the following, we will consider a graph that is a
els, theQ— 0 Potts model, and Coulomb gases in conformalbounded portionA of the d-dimensional cubic lattice’?
field theory[2—4]. (with edges that connect only nearest neighbors at Euclidean
First we note that the resylvariously attributed either to distance 1 in lattice unigsWe will be interested in the fol-
Kirchhoff (1847, or to Sylvester1857, Borchardt(1860), lowing property of a spanning tree. We choose two vertices
and Cayley(1856)] for the number\ of spanning trees on a ¥, y, together with a neighborhood of each. We assume that
graph can be written in the following generalized form: the neighborhoods are chosen in such a way that the bound-
ary passes through some vertices, but no edgasarbss the
N=cof A% = (- 1) idets 4, @) bo):Jgdary; all edges are either inside or ou?side. We take

where we have recalled the definition of the cofactor. Here/erticesx; on the boundary of the neighborhood and k
Xy, V1=1,2,...label the vertices in the graph, the matrix  Verticesy; on the boundary of that of. In practice, this can

(the lattice Laplacianis defined as be satisfied using neighborhoods that are approximately balls
' of radius of ordek®%. We can now look at the part of the

degx if x=y, tree lying outside the two neighborhoods; this amounts to a

A(x,y) ={ - tif x andy are connected byedges, (2) forest of trees, with each tree rooted on both the boundaries

of the neighborhoods of andy. We ask whether, for eadh
the pointsx;, y; lie in the same connected component in this
and A®wY) means the minor ofx;,y;), i.e., A with row x,  forest, and are in a distinct component from any otherxyair
and columny, deleted. Forx; =y, this reduces to the better ;. If so, then in terms of the original tree thes are con-
known result. The effect of deleting a row and column is tonected to the correspondings by branches of the tree that

0 otherwise,
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Y ~ X1Y1.%0Y 25+ + - XYk) (X1Y1,X2Y2,- - - XYk (X1Y1,X2Y2, - - XYk
e N N2 KON < Phranches = 7Dpaths :

/ \ (6)

2 N /y3 These continue to hold even if there are more thaertices
on the boundary of each neighborhood.
We will be interested in the scaling limit in which we first
X 4 = = Ko let A—7Z¢ (i.e., the system size tends to infinitwith x, y
/ \ fixed, and then we let the Euclidean distafcey]| (in lattice
\ oX units) become large. In this limit, the leading behavior of any
\ Y of the ratios or probabilities just defined will behave as a
N - TXg power law, P |x—y|"?, where X, is a scaling dimension
(which also depends ad). However, in the antisymmetrized

FIG. 1. Example of a spanning tree on a portion of the squarg.ombination that appears in E@), the leading part of
lattice, with pointsx, y and a neighborhood of each marked, with

verticesxy, X,, Xz andys, Y», y3 on the boundary of each shown. In AWK 2 HI NS o0 |x B y|‘2xt components )
this example, there are paths, lying outside the neighborhoods, that

connectx; to y; for eachi, as required, and those paths are distinct,
but there are only two distinct branchésonnected components
outside the neighborhoods. The paigsy, andxs, y; do not lie on
distinct branches.

may be canceled, so that a subleading pofméth a larger
exponentX2"Y™ may be dominant. Thus, in general, the
exponents must obey the inequalities

antisymm—_ y/k components_ ycbranches_ y/paths
are distinct outside the two neighborhoods selected, and we % =X =X =X ®
call this “crossingk times (between specified points in the  As the addition of edges in the neighborhoodxobr y
neighborhoods ok andy) by distinct branches.” See Fig. 1. contributes only a constant factor to the numh&f$anches
For given A, neighborhoods ok andy, and pointsx;, y;,  Wwe have thaixk comPonents: xbranches gor the two-dimensional

denote the number of such tr ’;;anc';‘gsz’““’(kyk)_ Then we case, the tree branches must enter the neighborhoothad

also define corresponding probabilities, sequence, and similarly gt As the tree branches that cross
from x to y cannot intersect becausge is planar, the only
PLULXY2-HI) = \XDVLXY 1 XIS (5)  nonzero terms in Eq(3) are for P’s that differ only by a

_ . _ . _ _ .. cyclic permutation. Fok odd, all cyclic permutations ok

It is obvious that there is a relation between this def'”'t'onobjects are even permutations, so all terms have the same
and _thek—componer)t spanning subgrgphs without_ circuitssign, as if the sum were symmetrized. Thereforedin2,
considered before, if the latter are defined/on that is, A Xantisymm_ k componenist  odld. We also note that id=2
with the interiors of the neighborhoods »fandy removed.  gimensions, the boundary of a “thickened” tree is a noninter-
Given ak-component spanning subgraph &f, a spanning  gecting dense loop, and the crossing by distinct branches
tree of A can be obtained by addirig-1 edges, each inside corresponds to crossing by the oo imes.
either the neighborhood of or of y, together with one edge  There s one further subtlety that must be mentioned. We
for each vertex il —A". If we also assume that there are paye defined ratios and probabilities on finite graphs, fol-
exactlyk vertices on the boundaries of each of the two neighy,veq by an infinite-volume limit. Each finite graph is
borhoods, them/p 22X is obtained by summing OVer spanned by a single tree, by construction, but as the volume
all the ways to add edges to eaklcomponent spanning increases, a path from one vertex to another in a typical tree
subgraph oA~ (with x; andy; in theith component for all)  may involve larger and larger excursions, so that for infinite
to obtain a spanning tree of whose branches are distinct yolume, two vertices might be connected only “at infinity,”
outside the two neighborhoods, and then also summing ovejnq then they can be regarded as not connected. Then the
the k-component subgraphs used in this construction. As th@miting measure is for a forest of trees, not a single tree. It
maximum possible number of ways to add edges is limiteqyrns out that ford<4, there is a single tree in the infinite-
by the size of the neighborhoods usedYLx22 X% s \olume limit, while for d>4 there are infinitely many
only slightly larger than the numbenN®™1X2V2--* of (infinite-size trees[8] (these statements hold with probabil-
k-component spanning graphs Af. (More precisely, there ity 1). Crossing probabilities bi distinct branches ok dis-
is a bound\WL2: - M < o NPaY1Xv2 X wherecy  tinct paths can be defined here as well, with crossing not
is independent of the distance froxto y.) allowed to be “through infinity”; we denote exponents under

Another possible definition of crossing froxto y would  this condition by “<.” These probabilities will be less than
require only that thé crossings of the spanning tree be madeor equal to the corresponding ones defined above, and so the
by k pathson the tree that are distin¢ghave no edges in related exponents obeyXxPranches= = ybranches  ypaths-e

common outside the neighborhoodfor k=1 these are the >xﬁa‘hs_ One hasX;”=(d-4)/2 for d>4 (Ref. [8], Thm.
same thing, and the probability ig.ISee Fig. 1. These num- 4.2) which because of the way this probability is normalized
bers\/odyLev2:-X can be obtained by adding edges to the(any vertex is on some trgés consistent with the belief that
k-component spanning subgraph&f in arbitrary positions  the Hausdorff dimension of any of the trees in the forest is 4
in A, and s bﬁgﬂléﬁéysz"""kyk)$/\/<p’;1t¥1151"2y2““’<"yk), and for d>4. It would be interesting to obtain the remaining
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exponentsahs= and XPa""es* for k> 1 also. In any case, tensors of given rankdegreg in dimensiond form an irre-

the distinction in definition disappears fde<4 where there ducible representation of the rotation groupdidimensions,

is a single spanning tree. SQO(d). In general, we expect that the leading part of the
We now turn to the calculation of the antisymmetrized crossing probabilityP, transforms as a scalar under rota-

combinations of\’s. According to Eq.(3), the antisymme- tions. A scalar(rotationally invariant operator can be ob-

trized sum of the relevant ratios is given by a ratio of cofac-tained if the product includes either all or none of the mem-

tors, bers of a complete linearly independent set of traceless
symmetric tensors for each degi@ank) I. Making the mini-
cof A(Xl XeY1 Vi) . . T
oy = E '/\/(lep(l)vxz}'P(Z)"--»XkYP(k))Sgnp/ N, mal choices of the degrees, we notice that this is analogous
cof A¥a¥1 PeS, to filling states for fermions, where the single fermion states

9) correspond to the symmetric traceless tensors. These tensors
transform the same way as “hyperspherical harmonics,”
As is well known, such cofactors can be obtained fromwhich span the space of functions on a sptgré. This can

Gaussian integrals over Grassmann varialileg’, be seen easily by representing eaghby a component of a
vectorx,, which transforms the same way, and the traces can
cof AXT %Y1 Y= + J IT dysdes, s, - o, €¥xy BAKYY, be excluded if we assume thaf, x,x, is constant, so that
- X X Xl yk 1 . . . .
x tensors with nonvanishing trace are equivalent to lower-

(10) de_gree fu_n_ctions. T_hen the symm_etric functionsjnunder
this condition are simply the functions @. If each fer-

where the overall sign is determined by the order of themion onS™! has a kinetic energy that is equal to the angular
Grassmann integratioriaot by the selected values gf y;).  momentuml, then the many-fermion state with lowest total
In the limits A — 79, followed by the limit ofx andy far  kinetic energy for a given number of fermiokgorresponds
apart, the cofactors above become Gaussian integrals forta using the lowest total degree. The case where all traceless
continuum massless complex scalar Fermi field. The equasymmetric tensors of eaoflowes) degree are used corre-
tion of motion for the Fermi fieldy is simply A¥=0, where  sponds to filling a Fermi sea by filling the lowest shells up to

A:Eizl d,9, is the Laplacian ind dimensions. As allx; angular momentunidegree of the traceless symmetric ten-
— X, the ratio of cofactors becomes a sum of correlationson L. The total kinetic energy corresponds to the scaling
functions of operators of the form dimension dimO. When the lowest states are all filled, but
the topmost shell is only partially filled, the scaling dimen-

OX) =i ih-+ Oy - (11) sion interpolates linearly between the values it takes for filled

shells. We point out that the use of fermions on the sphere is

(with k 4's, and where),, ,,..=d,,d,, ) atx, with a similar o o0 20 analogy, as the field theory of fermionSbh

operator ay with ¢ in place ofy. The undifferentiateds it time t corresponds to the original problem in radial

and ¢ are necessary to cancel the zero mode, both in the,,4nization, obtained by conformallly mappifg to S+
numerator and denominator of the correlation function. The, g by a logarithmic change of variable, so that the dilata-

remaining integrals can be simply expressading Wick’s
theorenm in terms of sums of products of derivatives of
Green'’s functionsa(x,y)=A"%(x,y) for the scalar fieldy in
d dimensions, and the required scaling limit of this expres
sion exists; one ha&(x,y) = |x-y|4? for d>2. Thus the
scaling dimension ofy or ¢ is (d—2)/2 in d dimensions,
and an operator of the above forgh has scaling dimension
XESYMITL dim O equal to(k—1)(d-2)/2 plus the number of -
partial derivatives inO (note that we replace# by k-1 kz; N(l,d), (12)
because the subtracted zero mode does not contribute to scal- =0
ing). This implies that fork=1, the operator has dimension
zero, which is correct as a spanning tree connects any two
pointsx, y. It will be convenient to define dimO=dim O
-(k=-1)(d-2)/2.

To find the operator that contributes the leading behavioN(l,d) is given for alll=0 by
of the correlation function for a givelky we must use as few l+d=1 l+d-3
derivatives as possible. Further, the equation of motion im- N(l,d) :( ) -< ) (14)

plies that any trace such a5, gV vanishes. Then the | -2

leading termO is a product in which each multiindex partial Here the first term is the number of symmetric tensors, and
derivatived, , i is a traceless symmetric tensor, and thethe subtraction is for removing the traces. From the binomial
total degregnumber of derivativesin the product is as low coefficients one sees thhl(l,d) is a polynomial inl of de-

as possible. Because of the anticommutation offitee ©  greed-2 for d=2, and hencek is a polynomial inL of
vanishes unless the traceless symmetric tengpl;,sz...zp are  degreed-1, and dimi O, is a polynomial of degred.

linearly independent. We notice that the traceless symmetric The leading behavior for large is

tion operator becomes the Hamiltonian for the radial evolu-
tion.

We defineN(l,d) to be the dimension of the space of
traceless symmetric tensors of degreén dimensiond.
When the shells are filled up to degregthe preceding con-
siderations lead immediately to the relations

L
dim’ O, = >, IN(l,d). (13)

1=0
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2|d—2
(d-2)!

(throughout this paper, we use notatln- Y asZ— o in the
strict sense: lim_,.X/Y=1). Then we find

N(l,d) ~ (15

2Ld—1
- (1)
dim’ _at 17
O da- o (17
and hence
d-1| (d-1)! [V
dim" O ~dim O ~ —{( ) } a/d-1).

d 2

(18)

for the values ok specified. As mentioned above, for other

values ofk, the scaling dimensiomow for an operator with

nonzero spin in generalies on a piecewise linear continu-
ous curve that interpolates the values above, and lies abo&

that given implicitly by Eqs(12) and(13), as polynomials in
L, which are trivially extended to continuous values.

By the inequalities(8), this result gives only an upper

bound on the leading exponentE™@""*Sor XPa™"S However,

the general formulas do give the exact expone&sy™™

for some, possibly subleading, terms in the probability. Th
rate of growth of the dimension¥*"Son the tree to cross
from x to y was shown rigorously to be less than of order
k¥(@-D in Ref.[9]. We obtain a bound with the same power,
but now with a precise coefficient, and with subleading cor-

rections. Note that the piecewise-linear curve Xgr'y™"is

very close to its lower envelope, close enough that they hav

the same average rate of growth, EB).

We now consider the exact form of the dimensions ob

tained here for th& values given by Eqg12) in smalld. In
two dimensionsN(l,2)=2 (I>0), and then

dim O, = (K*-1)/4 (19)

for k odd. This is in agreement with earlier resyl#3,5,9.
(Note that the scaling exponent for the path connectitmy
along the tred4] corresponds to the cage2, by consider-
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ing the dual treg.As emphasized above, fd=2 andk odd,
the arguments in this paper produce teeact XY™™
:Xﬁranc ®%(k’-1)/4, not only a bound. Note that after re-
placing k by k/2, this result is the same as thk-leg” di-
mension fork crossings by a dense polymigr].

Ford=3, we have the familiar formulb(l,3)=2I+1, and
then k=(L+1)?, so L=\k-1. For the scaling dimensions,
dim’ O =L(L+1)(4L+5)/6, and

antisymm_ y: _g
Xk dim Oy 3
For d>3, one can similarly solve explicitly, but the re-

sults are not as simpl@n particular, they are not polynomi-
als in kYD) | am grateful to C. Tanguy for pointing out
that Egs(12) and(13) can be summed in closed form for all

d, and that ford odd, k is a polynomial in[L+(d-1)/2]? of
degregd-1)/2. Hence in the casek=4, 5, 7, and 9, dinO,

can be expressed in terms of radical&.ifrord=6, 8 and all

d= 10, one meets polynomials of degree greater than 4, and
the results presumably cannot be expressed in terms of radi-
Is.

It is tempting to believe that the results obtained here for
the “filled shell” values ok, and their smootlipolynomial in

L) extension to generak, might be the exact values of
xpranchesand xPahstor general dimensiod> 2, as well as for
d=2. While it appears quite possible thg}2 e xpaihsin

1 1
k3/2 _ _k1/2 [
6

> (20)

Qgeneral, it is not at all clear that they equE"'sy™M espe-

cially as the equality that holds in two dimensions could be
obtained from a simple argument that all cyclic permutations
of an odd number of objects are even, an argument that defi-
nitely does not go through id>2.

In conclusion, we have obtained, essentially rigorously, a
grecise upper bound on the exponentskarossings of the
uniform spanning tree on a finite graph dndimensions, as

well as some exact scaling dimensions in each dimension.

However, we have not addressed the exponents in the uni-
form spanning forest which is obtained on an infinite graph
for d>4.
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